ISMENIUS CAVUS: ANCIENT LAKE DEPOSITS AND CLAY MINERALS SURROUNDED BY AMAZONIAN GLACIERS

N.Mangold¹, E. Dehouck², F. Poulet³, V. Ansan¹. and S. Le Mouélic¹

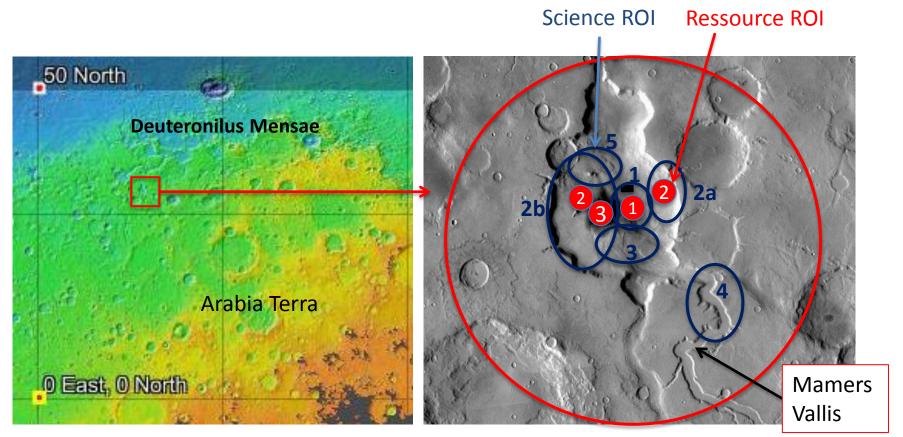
¹LPGNantes UMR6112 CNRS Université Nantes, France,

²StonyBrook University, New York, USA,

³IAS, Université Paris XI, Orsay, France

A biking trip through Mars history!!

Geographic and geologic context



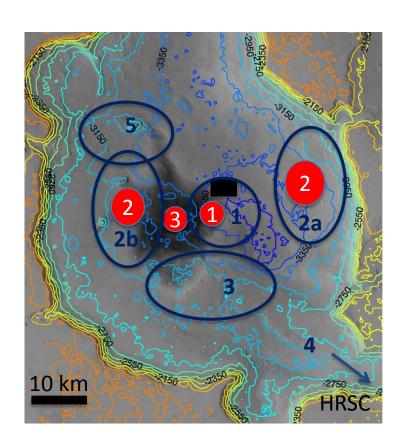
1st EZ Workshop for Human Missions to Mars

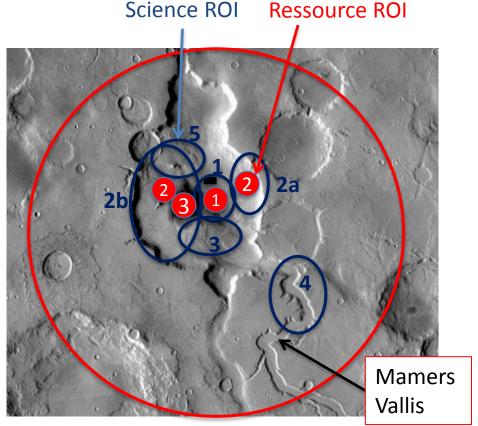
Ismenius Cavus: Coord: 33.5°N, 17°E,

Elevation: -3.5 to -1.5 km

At the junction between current mid-latitude ice deposits and low latitude clay minerals

Exploration Zone Map



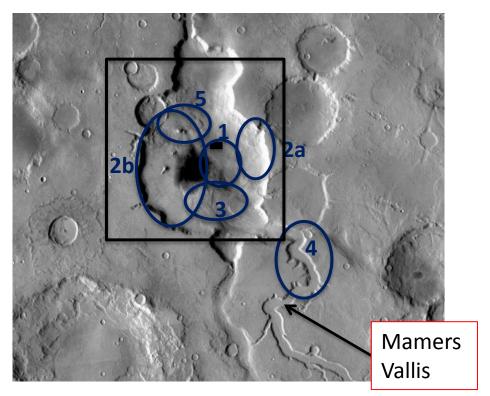

1st EZ Workshop for Human Missions to Mars

Ismenius Cavus: Coord: 33.5°N, 17°E,

Elevation: -3.5 to -1.5 km

At the junction between current mid-latitude ice deposits and low latitude clay minerals

1st EZ Workshop for Human Missions to Mars


- 2 Glacial landforms
- Modified ejecta blanket
- **3,4** Channel in the delta deposits
- **3,4** Delta deposits

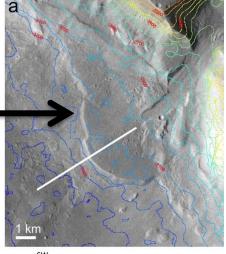
Geologic map caption

- Depression floor
- Phyllosilicate-bearing unit
 - Noachian plateau

10 km

At the junction between current mid-latitude ice deposits and low latitude clay minerals

Dehouck et al., Planet. Spa. Sci., 2010


- Glacial landforms
- Geologic map caption

1st EZ Workshop for Human Missions to Mars

- Modified ejecta
- Depression floor
- Phyllosilicate-bearing
- Channel in the delta deposits

Noachian plateau

3,4 Delta deposits

Delta front -3.3

A paleolake with clay minerals in lake sediments

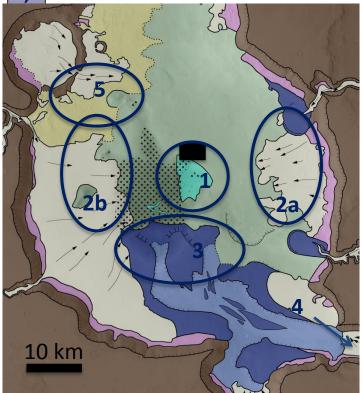
- Three delta fans (blue on map) (Ori et al, 2000)
- HRSC topography consistent With a delta plain and a steep front
- The three fans have a plateau at the same elevation (-3100 m)
- ⇒ Consistent with coeval activity in a past lake (>400 m deep)

2 Glacial landforms

Geologic map caption

1st EZ Workshop for Human Missions to Mars

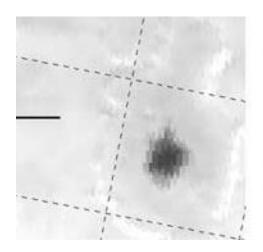
Modified ejecta blanket

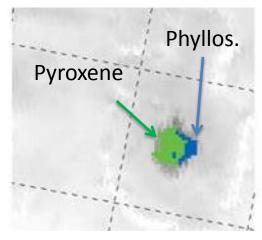

Depression floor

Channel in the delta deposits

Phyllosilicate-bearing unit

3,4 Delta deposits





A paleolake with clay minerals in lake sediments

Specific type of clay minerals on dark terrains (Poulet et al, 2005, OMEGA/Mars Express)

Actually just darker than the surroundings No high resolution images at that time

Dehouck et al., Planet. Spa. Sci., 2010

Glacial landforms

Geologic map caption

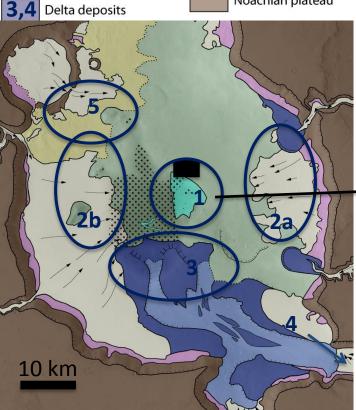
1st EZ Workshop for Human Missions to Mars

Modified ejecta

Depression floor

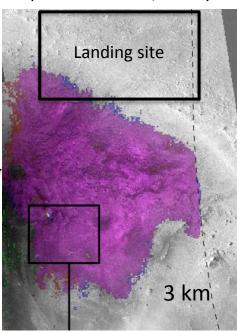
Channel in the

Phyllosilicate-bearing


delta deposits

A paleolake with clay minerals in lake sediments

CRISM spectral map (Dehouck et al, 2010)



Noachian plateau

Fe-Mg phyllosilicates (likely smectites)

Correlation with erosional window of layered deposits

Clay minerals consistent with fine-grained

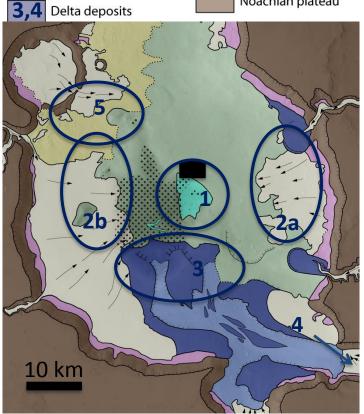
deposits at lake bottom

Science ROI 1

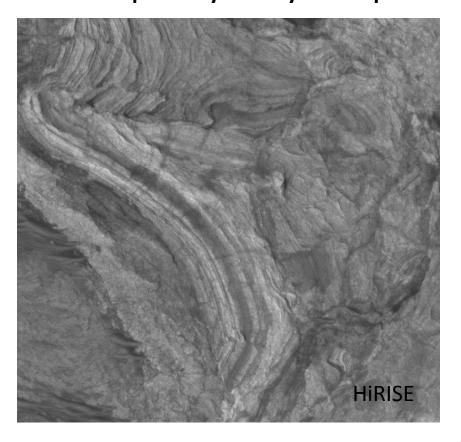
1st EZ Workshop for Human Missions to Mars

2 Glacial landforms

Modified ejecta


- Depression floor

Geologic map caption

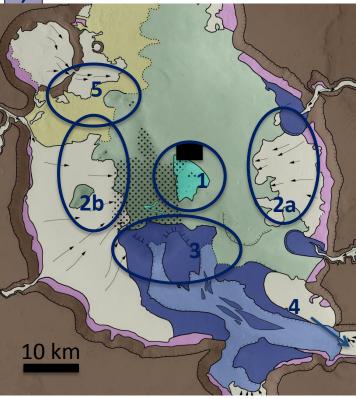

- blanket

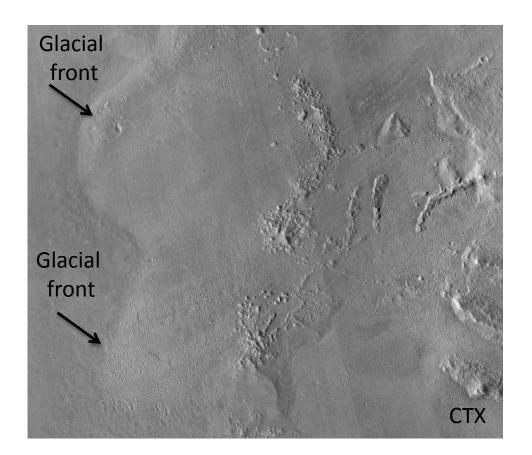
 Channel in the
- 1 Phyllosilicate-bearing
- delta deposits

Noachian plateau

Close-up on clay-rich layered deposits

Dehouck et al., Planet. Spa. Sci., 2010


Science ROI 2a


lissions to Mars

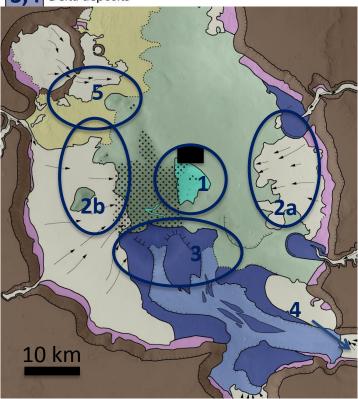
- **2** Glacial landforms
- Geologic map caption

 1^{st} EZ Workshop for Human Missions to Mars

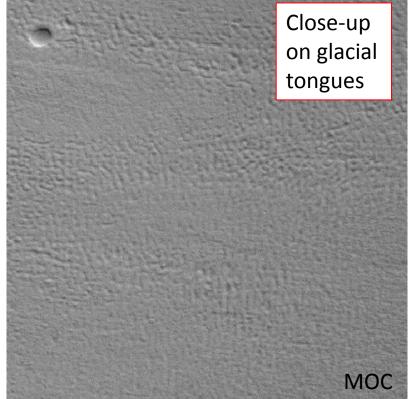
- Modified ejecta blanket
- Depression floor
- **3,4** Channel in the delta deposits
- Phyllosilicate-bearing
- **3,4** Delta deposits
- Noachian plateau

Lobate debris aprons 10 km east of the landing zone

Dehouck et al., Planet. Spa. Sci., 2010


Science ROI 2a

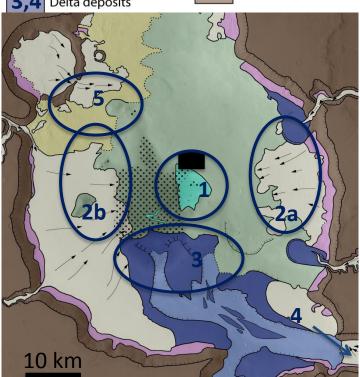
- 2 Glacial landforms
- Geologic map caption


1st EZ Workshop for Human Missions to Mars

- Modified ejecta blanket
- Depression floor
- **3,4** Channel in the delta deposits
- Phyllosilicate-bearing unit
- **3,4** Delta deposits
- Noachian plateau

Pitted texture typical of sublimation of ice (Mangold, 2003)
Similar to Deuteronilus glaciers (Head et al., this morning)

Close-up

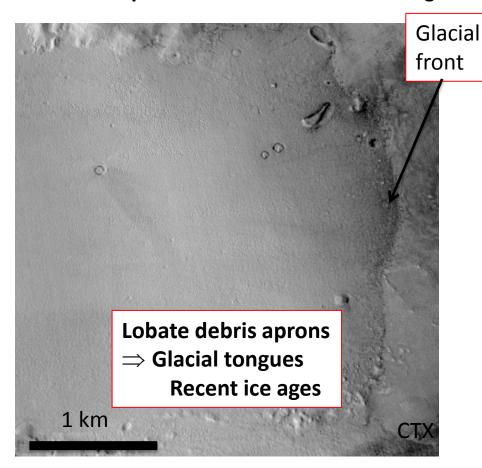


Dehouck et al., Planet. Spa. Sci., 2010

Science ROI 2b

1st EZ Workshop for Human Missions to Mars

- Glacial landforms
 - Modified ejecta blanket
- Channel in the delta deposits
- **3,4** Delta deposits


Geologic map caption

Depression floor

Phyllosilicate-bearing

Noachian plateau

Lobate debris apron 15 km west of the landing zone

Science ROI 3, 4

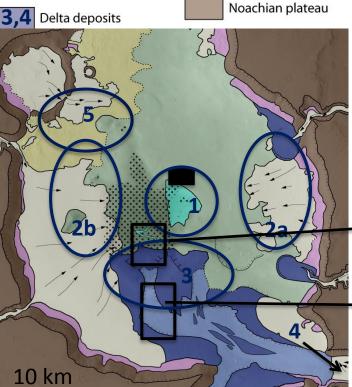
Glacial landforms

Geologic map caption

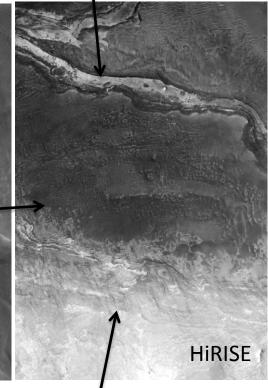
1st EZ Workshop for Human Missions to Mars

Modified ejecta blanket

Depression floor


Fluvial and deltaïc deposits from Mamers Vallis

Channel in the delta deposits


Phyllosilicate-bearing

Clay minerals in some layers Fluvial bars

3,4 Delta deposits

HiRISE km Late fluvial incision

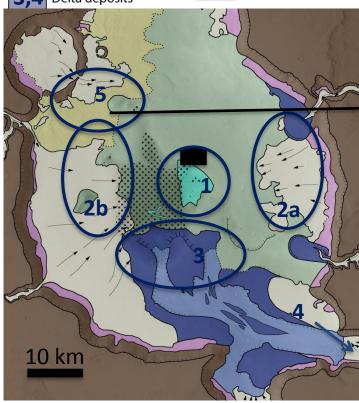
Flow direction

Layers at delta front

Science ROI 5

1st EZ Workshop for Human Missions to Mars

- 2 Glacial landforms
 - Modified ejecta blanket
- **3,4** Channel in the delta deposits
- **3,4** Delta deposits

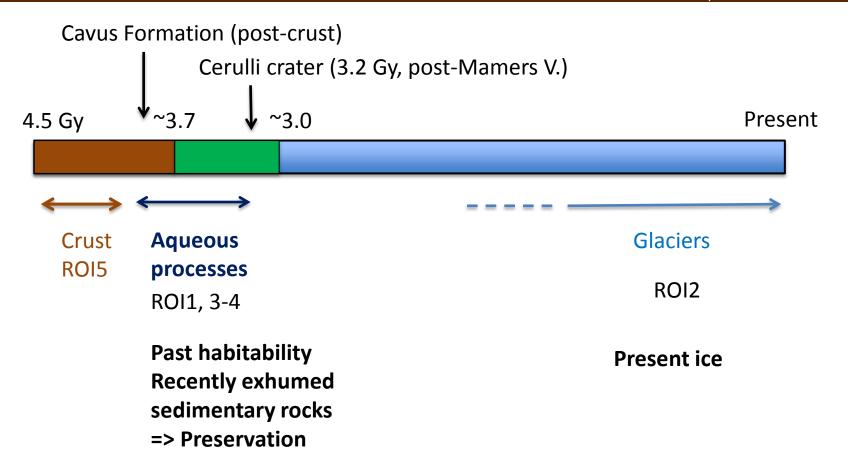

Geologic map caption

Depression floor

Phyllosilicate-bearing unit

Noachian plateau

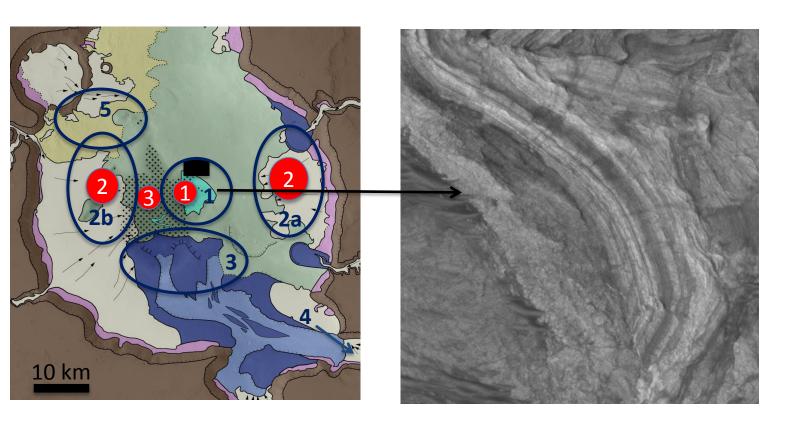
Ejecta from craters: Access to Noachian crustal rocks Limitation: Maybe covered by ice



Dehouck et al., Planet. Spa. Sci., 2010

Science ROIs Summary: Range of geologic time

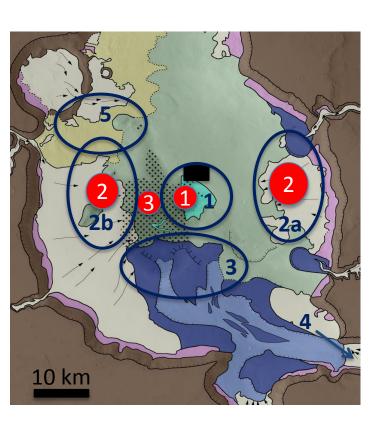
1st EZ Workshop for Human Missions to Mars


Resource ROI 1

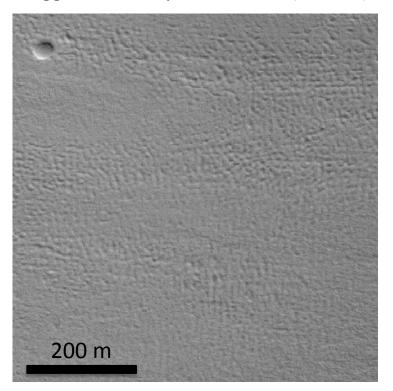
1st EZ Workshop for Human Missions to Mars

Clay rich deposits contain water

e.g., saponite: (Ca,Na)0,3(Mg,Fe)3(Si,Al)4O10(OH)2•4(H2O)



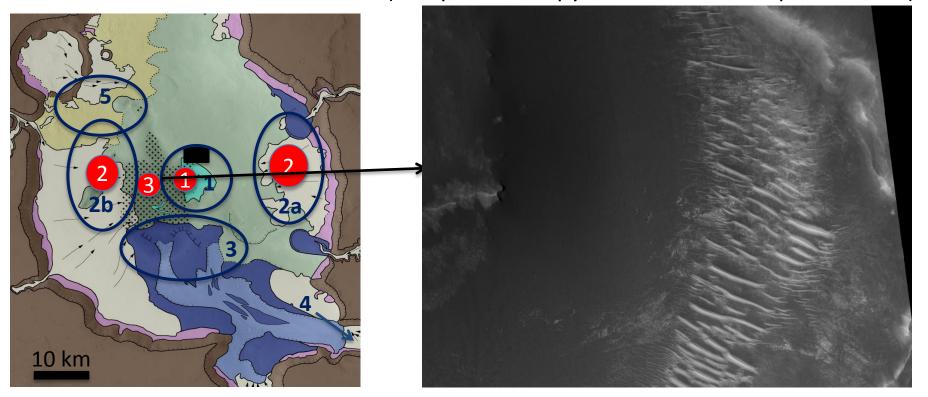
Resource ROIs 2a and 2b



1st EZ Workshop for Human Missions to Mars

Glacial deposits contain ice

Texture with some sublimation but no intense sublimation suggests ice likely near surface (<<10 m)



Resource ROI 3

1st EZ Workshop for Human Missions to Mars

Area of sand few kms west of the landing zone Mobile material for construction (composition is pyroxene rich from spectral data)

Resource ROIs Summary

1st EZ Workshop for Human Missions to Mars

- Two main resources for water:
 Clay minerals near the landing site proposed
 Water ice 10 km of potential landing site
- Mobile material for constructions close to landing site

Science ROI(s) Rubric

1st EZ Workshop for Human Missions to Mars

			Site Factors	SR011	SR012	SROI3	SR014	SROIS	RR011	RR012	RR013	EZ SUM	
	Astrobio	Threshold	Potential for past habitability Potential for present habitability/refugia	•		•	•		•			4,0	
			Potential for present habitability/refugia		?					?		0,2	
	Ä	Qualifying	Potential for organic matter, w/ surface exposure	•		•	0		•			3,1	
	nce	Threshold	Noachian/Hesperian rocks w/ trapped atmospheric gases	•		•		0	•			3,1	
	Scie		Meteorological diversity in space and time	?	?	0			?	?		0,5	
	eric		High likelihood of surface-atmosphere exchange		•					•	•	3,0	
eria	Atmospheric Science	Qualifying	Amazonian subsurface or high-latitude ice or sediment		•					•		2,0	
Criteria	Atm		High likelihood of active trace gas sources										
Site (Range of martian geologic time; datable surfaces	able surfaces ?		•			2,1				
<u></u>		Threshold	Evidence of aqueous processes			•	•		•			4,0	
		Threshold	Evidence of aqueous processes	•									
		Threshold	Potential for interpreting relative ages	•	?			0	•	?		2,3	
	ce	Threshold		•	?			0	•	?		2,3	
Science	cience	Threshold	Potential for interpreting relative ages	•	?			0	•	?		2,3	
	Geoscience	Threshold	Potential for interpreting relative ages Igneous Rocks tied to 1+ provinces or different times	•				•	•	?			
	Geoscience	Threshold Qualifying	Potential for interpreting relative ages Igneous Rocks tied to 1+ provinces or different times Near-surface ice, glacial or permafrost					•		?		2,0	
	Geoscience		Potential for interpreting relative ages Igneous Rocks tied to 1+ provinces or different times Near-surface ice, glacial or permafrost Noachian or pre-Noachian bedrock units					•		?		2,0	
	Geoscience		Potential for interpreting relative ages Igneous Rocks tied to 1+ provinces or different times Near-surface ice, glacial or permafrost Noachian or pre-Noachian bedrock units Outcrops with remnant magnetization					•		?		2,0	

Key							
•	Yes						
0	Partial Support or Debated						
	No						
?	Indeterminate						

Resource ROI(s) Rubric

1st EZ Workshop for Human Missions to Mars

			Site Factors	SROI1	SR012	SROI3	SROI4	SROIS	RR011	RR012	RROI3	EZ SUM
	Water Resource	gineering	Meets First Order Criteria (Latitude, Elevation, Thermal Inertia)									
			Potential for ice or ice/regolith mix Potential for hydrated minerals		•					•		2,0
			Potential for hydrated minerals			0	?.		•			2,2
			Quantity for substantial production		•	0			•	•		4,1
		Threshold	Potential to be minable by highly automated systems						?			0,2
<u> </u>			Located less than 3 km from processing equipment site						•			2,0
<u> </u>			Located no more than 3 meters below the surface		0	0	?		•	0		2,4
ב			Accessible by automated systems		?				•	?		2,2
ני	Š		Potential for multiple sources of ice, ice/regolith mix and hydrated minerals		•		0			•		2,1
	Engineering	Qualifying	Distance to resource location can be >5 km		•	•				•		3,0
ב			Route to resource location must be (plausibly) traversable		•	?	?			•		2,2
			${\sim}50~\text{sq}$ km region of flat and stable terrain with sparse rock distribution						•			2 ,0
and Civil Engineering		Threshold	1-10 km length scale: <10°		•	?	?		•	•		4,2
<u> </u>			Located within 5 km of landing site location						•			2
n D	ĵuΞ	Qualifying	Located in the northern hemisphere		•	•	•	•	•	•	•	8,0
ū			Evidence of abundant cobble sized or smaller rocks and bulk, loose regolith				0		?		•	1,3
=	Civil		Utilitarian terrain features									
~	Food	Qualifying	Low latitude									
_			No local terrain feature(s) that could shadow light collection facilities		•				•	•	•	5,0
ב		Qualitying	Access to water		•				•	•		4,0
			Access to dark, minimally altered basaltic sands								•	1,0
ISKU			Potential for metal/silicon					?	?		?	0,4
7	Metal/Silicon Resource		Potential to be minable by highly automated systems						?		•	1,2
4		Threshold	Located less than 3 km from processing equipment site						?		•	1,2
	Sil		Located no more than 3 meters below the surface								•	1,0
	etal/Silico Resource		Accessible by automated systems								•	1,0
	det Re		Potential for multiple sources of metals/silicon									
	_	Qualifying	Distance to resource location can be >5 km					•				1,0
			Route to resource location must be (plausibly) traversable									

Key							
•	Yes						
0	Partial Support or Debated						
	No						
?	Indeterminate						

Highest Priority EZ Data Needs

1st EZ Workshop for Human Missions to Mars

- High resolution stereo imagery on glacial flows (both for Resource and Science ROI2)
- High resolution imagery on Mamers Vallis outlet (for Science ROI4 and for navigation)

Conclusion:

A unique location on Mars with both present ice and past lake sediments with clay minerals

BACKUP SLIDES

Prioritization List of EZ Data Needs

1st EZ Workshop for Human Missions to Mars

- Provide a prioritized list of orbiter/rover data to be collected to assess the science potential of the EZ.
- Provide a prioritized list of orbiter/rover data to be collected to assess the resource potential of the EZ.
- This data could be either from a current or future asset.
- If data to be collected are from existing assets please indicate:
 - HiRISE
 - CRISM
 - THEMIS
 - other

Provide a short justification as to what questions this will address.